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ABSTRACT B
Laws has introduced a class of texture features based on

average degrees of match of the pixel neighborhoods with a set
of standard masks. These features yield better texture classi-
fication than standard features based on pairs of pixels. This
paper investigates simplifications of these features, and shows
that their performance is not greatly affected by their exact
form, and also appears to remain the same if only local match
maxima are used. It also presents an alternative definition
of such features based on sums and differences of Gaussian
convolutions.
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1. Introduction

Texture analysis is an important aspect of many image analy-

sis tasks. It is used to describe and discriminate among complex

regions in an image that are easier to characterize statistically

rather than in detail. For a general introduction to the sub-

ject, and a review of the many approaches to the quantitative

characterization of textures that have been proposed, see E1].

The suggestion that a textured region can be described in

terms of the values of local properties averaged over the region

dates back to at least the 1960's (see [2], p. 116; [3]; and [4],

p. 419). The evidence that human texture discrimination depends

on differences in second-order gray level statistics [5] can be

largely accounted for in terms of differences in first-order

statistics (in particular, average rates of occurrence) of local

features such as lines and line ends; see, e.g., [6]. In a com-

parative study [71, texture classification performance based on

second-order gray level statistics was found to be no better than

performance based on first-order statistics (in particular, means)

of gray level differences. A recent study of the role of aver-

age values of local properties in texture discrimination can be

found in [8].

Recently Laws [9,10] developed and investigated a set of

textural properties based on average values of local properties -

specifically, matches between the pixel neighborhoods and a set

of standard masks. He found that these properties performed
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significantly better than standard properties based on pairs of

pixels. The definitions of Laws' properties are summarized in

Section 2, where we also show that very similar sets of proper-

ties can be defined in terms of sums and differences of Gaussian

convolutions. Gaussian convolutions have been used by others in

modeling feature detection processes in human vision; see [11,12].

Section 3 presents experimental results on the performance of

Laws' properties (in comparison with standard ones), and showing

that their performance remains about the same if we simplify

their definition or if we use only the local match maxima. (On

the roJe of local extrema in texture analysis see [13-15].)
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2. Laws' textural properties

Laws' properties, which he called "texture energy measures",

are derived from three simple vectors of length 3,L3E(l,2,l),

E3:(-l,0,l), and S3:(-1,2,-I), which represent the one-dimensional

operations of center-weighted local averaging, symmetric first

differencing ("edge detection"), and second differencing ("spot

detection"). If we convolve these vectors with themselves or

each other we obtain five vectors of length 5:

L5 E (1,4,6,4,1) = L3*L3

S5 (-1,0,2,0,-i) = E3*E3 = L3*S3

R5 (l,-4,6,-4,1) = $3*S3

E5 (-l,-2,0,2,l) = L3*E3

W5 (-1,2,0,-2,l) = E3*S3

where L5 is again a local average, S5 and E5 are respectively spot

and edge detectors, and R5 and W5 can be regarded as "ripple"

and "wave" detectors. Sets of larger vectors can be defined by

repeating this convolution process [10], but we will not use them

here.

If we now convolve the row vectors of length 3 or 5 with column

vectors of the same length, we obtain Laws' 3x3 or 5x5 masks.

The nine 3x3 masks are shown in Table 1. It can be shown that

these masks span the space of 3x3 neighborhoods, i.e., any 3x3

array is a linear combination of them. For brevity, we omit

the convolution and transpose signs from now on; e.g., we denote

L3t*S3 by L3S3.
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To use these masks to describe the texture in a (sub)image,

we convolve them with the image and use statistics of the results

as textural properties. Laws studied the power of these con-

volutions, in conjunction with various statistics, to discriminate

textures. Based on these studies, he concluded that the most

useful 5x5 masks were the zero-sum masks obtained from L5, S5, R5,

and E5 - particularly, masks such as those shown in Table 2 and/

or their 900 rotations, where applicable. He also concluded that

the most useful statistics were the sums of the squared or abso-

lute values of the image after these masks are convolved with it.

The sum of squares justifies the terminology "texture energy

measures", but the sum of absolute values is preferable because

it is computationally cheaper.

In the experiments reported in the next section, we used

the 5x5 Laws features listed above, as well as the eight zero-

sum 3x3 features (i.e., all but L3L3).

Masks very similar to the Laws masks can be obtained by

using approximations to simple combinations of Gaussians. For

example, the "five-part field" of [11] has a central excitatory

zone flanked by two inhibitory zones which are in turn flanked

by two weak excitatory zones, where the relative weights of the

Gaussians were taken to be 0.2,-0.7,1,-0.7, and 0.2. If we

scale these values by a factor of 6, we obtain (1.2,-4.2,6,-4.2,

1.2) - almost exactly the values in Laws' R5 vector. Similarly,

the "three-part field" of (11] used weights of -0.5,1, and 0.5,

exactly proportional to Laws' S3 vector.
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3. Experiments

In most of our experiments we used four samples of each

of seven textures - G-grass, R=raffia, S=sand and W-wool from

Brodatz's album [16], which were also used by Laws ([10], p. 45),

and three geological terrain types (L=lower Pennsylvanian

shale, M=Iississippian limestone and shale, P=Pennsylvanian

sandstone and shale) which were used in [7]. These samples

are shown in Figure 1. To avoid effects of unequal contrast

on the feature values, each sample was transformed to give it a

flat gray level histogram.

Each of the masks that were tested was convolved with each of

the 28 images, and the sum of absolute values was then computed.

For each mask, this yields a 28-point scatter plot. Six thresholds

were chosen, by hand, to separate the seven classes in this plot

as completely as possible. The number of samples that could be

correctly classified in this way was taken to be the score of

the given mask. Table 3 shows these scores for the eight zero-

sum 3x3 Laws masks, as well as for the four 5x5 masks which Laws

regards as best.

For comparison, the scores of four standard texture features

are also shown in Table 3. Two of these, CONX and CONY, are

Haralick's [1] "contrast" feature for displacements of (1,0)

and (0,1). The third feature, E/A, is "edge per unit area"; it
1 1 1 1 1 0

was computed by applying the eight edge masks 0 0 0, 1 0 -1,...
-1 -1 -1 0 -1 -1

at each pixel, taking the highest value as the gradient magnitude



and the orientation of that mask as the gradient direction;

suppressing nonmaxima of the gradient magnitude in the gradient

direction; and counting the surviving maxima. The fourth

feature, WE/A ("weighted edge per unit area"), uses the sum

of the magnitudes at the maxima in place of the number of maxi-

ma. We see that these features perform consistently more poorly

than the Laws features.

The best Laws features correctly classify 25 out of the 28

samples, or nearly 90%, a remarkable result for a one-feature,

seven-class task. Figure 2 shows, for one sample each of the

raffia and sand classes, the results of convolving the sample

with each of the eight 3x3 Laws masks and scaling the results

to the range [0,631.

Does the performance of the Laws features depend on the

quantitative definitions of the masks, or just on their general

forms? To test this, we tried six modifications of the R5R5

feature, as well as two modifications of the E5L5 feature, as

shown in Table 4. Note that all of these modifications have

the zero-sum property. We see from Table 3 that some of these

modifications perform about as well as, and in one case even better

than, the original Laws features. Thus we see that simple concen-

tric spot masks, or symmetric, centrally weighted edge masks, may

provide results comparable to those obtained from the more complex

Laws masks. Laws himself found that some "ad hoc masks" did

quite well; see [10] pp. 101-110.
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In many cases, it may be sufficient to use the local maxima

of the responses to the masks, rather than the responses at

every pixel. To illustrate this, we applied local nonmaximum

suppression to the outputs of three 5x5 Laws masks, R5R5,

E5L5, and L5S5. Nonmaxima were suppressed in all directions

for the isotropic mask R5R5, in the vertical direction for E5L5,

and in the horizontal direction for L5S5 (see Table 2), to

a distance of 1 or 2 pixels. For R5R5 and E5L5 suppression

to distance 1 actually improved the results (to 26 and 24

correct, respectively), while suppression to distance 2 de-

graded them again (25 and 22 - no net change and a net reduc-

tion of 1, respectively); and for L5S5, suppression to both

distances yielded a net reduction of 1 (21 correct). These

results suggest that the maxima of the responses may contain

the key information for texture description. Figure 3 shows

the results of convolving the same two raffia and sand samples

with the R5R5, E5L5, and L5S5 masks and then suppressing non-

maxima out to distance I.

A supplemental experiment was carried out with two of the

classes, L and M, which have been found hard to discriminate

using other types of texture features (e.g., [7]). We used

either 16 64x64 images or 64 32x32 images from each class,

obtained by subdividing a 256x256 image of each terrain type

(Figure 4), and we used only the L5S5 feature and modifications

of it. Using L5S5, the score for the 32 64x64 samples was 29



correct, i.e., over 90%, and that for the 128 32x32 samples

was 101 correct (under 80%). (For the three classes L, m and

P, the best result using a single texture feature in [7] was

only about 70%.) Using only local maxima, the scores were

30 and 102, a slight improvement, confirming the results in

the preceding paragraph. Incidentally, the relative positions

of these local maxima do not seem to contain any information

useful for distinguishing the textures. Figure 5 shows the

positions of the maxima, and Table 5 shows cooccurrence matrices

for maxima (l's) and nonmaxima (O's) for unit displacements

in the four principal directions; they are nearly identical.
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4. Concluding remarks

Laws' "texture energy measures", based on 3x3 or 5x5 masks,

are more powerful than measures based on pairs of pixels. Their

power depends on the general forms of the masks (edge-like, spot-

like, etc.) rather than on the specific numerical values used

in the masks, and it seems to depend primarily on the local

maxima of the mask matches.
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L3 t*L3: L3 t*E3-: L3 t*S3

1 2 1 -1 0 1 -1 2 -1

2 *2 -2 0 2 -2 4 -2

1 2 1 -1 0 1 -1 2 -1

E3t*E3: E3t*E3: E3t*>:

-1 -2-1 1 0 -i 1 -2 1

0 00 0 00 00 0

1 2 1 -1 0 1 -1 2 -1

S3 t*L3: S3 t*E3: S3 t*S3:

-1 -2-1 1 0 -1 1 -2 1

2 4 2 -2 0 2 -2 4 -2

-1 -2-1 1 0 -1 1 -2 1

Table 1. The nine 3x3 Laws masks.
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L5ES: E5S5:

-1 -2 0 2 1 -1 0 2 0 -1

-4 -8 0 8 4 -2 0 4 0 -2

-6 -12 0 12 6 0 0 0 0 0

-4 -8 0 8 4 2 0 -4 0 2

-1 -2 0 2 1 1 0 -2 0 1

L5S5: R5R5:

-1 0 2 0 -1 1 -4 6 -4 1

-4 0 8 0 -4 -4 16 -24 16 -4

-6 0 12 0 -6 6 -24 36 -24 6

-4 0 8 0 -4 -4 16 -24 16 -4

-1 0 2 0 -1 1 -4 6 -4 1

Table 2. Four 5x5 Laws masks judged to be most useful for
texture discrimination.



5x5 Laws and

3x3 Laws classical Modified 5x5 Laws

Feature Score Feature Score Feature Score

L3E3 19 E5L5 23 R5R5a 22

L3S3 23 E5S5 25 R5R5b 23

E3L3 19 L5S5 22 R5R5c 20

E3E3 21 R5R5 25 R5R5d 22

E3S3 24 CONX 20 R5R5e 24

S3L3 19 CONY 19 R5R5f 20

S3E3 24 E/A 19 E5L5a 22

S3S3 25 WE/A 19 E5L5b 24

Table 3. Number of the 28 samples correctly classified
using hand-picked thresholds for eight 3x3 Laws
features, four 5x5 Laws features and four classi-
cal features, and eight modified 5x5 Laws
features.



R5R5a: 1 1 1 1 1 R5R5e: 0 0 1 0 0

1 -4 -4 -4 1 0 0 -10 0 0

1-4 16-4 1 1-10 36-10 1

1-4-4-4 1 0 0 -10 0 0

1 1 1 1 1 0 0 1 0 0

R5R5b: 1 1 1 1 1 R5R5f: -1 -1 -2 -1 -1

1 -8 -8 -8 1 -1 -3 -4 -3 -1

1-8 48-8 1 -2-4 48-4-2

1 -8 -8 -8 1 -1 -3 -4 -3 -1

1 1 1 1 1 -1 -1 -2 -1 -1

R5R5c: -1 -1 -1 -1 -1 E5L5a: -1 -1 -1 -1 -1

-1 -4 -4 -4 -1 -2 -2 -2 -2 -2

-1 -4 48-4 -1 0 0 0 0 0

-1 -4 -4 -4 -1 2 2 2 2 2

-1 -1 -1 -1 -1 1 1 1 1 1

R5R5d: -2 -2 -2 -2 -2 E5L5b: -1 -1 -1 -1 -1

-2 0 0 0 -2 -8 -8 -8 -8 -8

-2 0 32 0 -2 0 0 00 0

-2 0 0 0 -2 8 8 8 8 8

-2 -2 -2 -2 -2 1 1 1 1 1

Table 4. Six modifications of the R5R5 Laws feature, and two
modifications of the E5L5 feature
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L M

(0,1) 0 1 (0,1) 0 1

0 0.515 0.131 0 0.515 0.134

1 0.131 0.223 1 0.134 0.217

(1,0) 0 1 (1,0) 0 1

0 0.289 0.357 0 0.297 0.352

1 0.354 0.000 1 0.350 0.001

(1,1) 0 1 (1,1) 0 1

0 0.349 0.297 0 0.360 0.289

1 0.294 0.060 1 0.288 0.063

(1,-1) 0 1 (1,-1) 0 1

0 0.352 0.294 0 0.357 0.292

1 0.292 0.063 1 0.291 0.060

Table 5. (Maxima, nonmaxima) cooccurrences for the L and
M textures; the displacement is shown in the
upper left corner of each matrix.
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